Distinguishing *Gilbertiodendron Dewevrei* and Mixed Forest in the Okapi Wildlife Reserve, Democratic Republic of Congo, using multi-source satellite data

Vanchy Li, Regs Regenye, Yu-Yun Ruan, and Caleigh Mclaren

\$ 01

Research Goals and Objectives

Conceptual Model

WCS

Wet Season: March-May and August-November 30-40 Meter Height with Open Understory and dense subcanopy

Mixed Forest

Gilbertiodendron

Forest Composition in the Okapi Wildlife Reserve

MIXED

P. macrocarpus, P. macrophylla, C. procera, D. glaucecens, & E. suaveolens

Gilbertiodendron Dewevrei (GD)

The Mechanisms for Monodominance in the Trans-Congo Region

GD's seeds have large mass and low dispersibility *GD* is an ectomycorrhizal monodominant species

GD's shade tolerantGD's leaves haveGD's seedlingssaplings give an
advantage overslow decompositionshare many fungalwhich createssymbionts withnon-shade tolerantbeneficial conditionstheir parentspioneer speciesfor large seeds

From Steege et al., 2019

Research Goals and Objectives

- 1. Evaluate different satellite datasets in their ability to discern between monodominant and mixed forest
- 2. Create a final map that distinguishes forest types
- 3. Produce an explanation of the methodology for replication by WCS

BO2 Data and Methods

Data Table

1	6	
-	2	
1	K.	ζ.
2	Ľ	

	Description	Туре	Spatial Resolution	Temporal Resolution	Spectral Resolution	Source
WCS ground data	Ground sample data	Shapefile (points)	NA	NA	NA	WCS
Sentinel-2	Optional data	raster	10m - 20m	5 days	14 bands	GEE: https://developers.goo gle.com/earth-engine/ datasets/catalog/COP ERNICUS_S2_SR
PlanetScope	Optional data	raster	3 - 5m	daily	4 bands	PlanetScope: https://developers.goo gle.com/earth-engine/ datasets/catalog/proje cts_planet-nicfi_assets _basemaps_africa

Methodology

Month Selection

Sentinel-2 in study area from Jan to Dec, 2022

PlanetScope in study area from Jan to Dec, 2022

March 2022 Images

Sentinel-2

PlanetScope

How training sites were selected?

Training Sites Selection: Collect Earth Online

Monodominant and Mixed Training Sites in Eboyo

*

Analysis

Random Forest: Partial Plots and Feature Importance Plot

Partial Dependence on S2_Coastal

Partial Dependence on S2_NIR

Partial Dependence on Planet_B

PlanetScope

Sentinel-2

Random Forest Classification

Sentinel-2

PlanetScope

Random Forest Validation: Confusion matrix

Sentinel-2				
OOB (Out of Bag) Error: 0.2183				
Confusion Matrix:				
	0 Gilbert	1 Mixed	2 Water	Class Error
0 Gilbert	154	50	0	0.245
1 Mixed	50	151	0	0.248
2 Water	0	0	53	0

PlanetScope				
OOB (Out of Bag) Error: 0.286				
Confusion Matrix:				
	0 Gilbert	1 Mixed	2 Water	Class Error
0 Gilbert	144	60	0	0.294
1 Mixed	71	130	0	0.353
2 Water	0	0	53	0

PlanetScope

Sentinel-2

Sentinel-2 Visual Validation

PlanetScope Visual Validation

Monodominant

Mixed

804

Conclusion and Main Takeaways

Striping issue in B1, B2, B3, and B5

Split Raster issue

Potential Solutions

Segment Anything

Histogram Matching (Demo)

Conclusion

Forest Composition

Sentinel-2: Monodominant: 32% Mixed and others: 68%

PlanetScope: Monodominant: 62% Mixed and others: 38%

Water and Monodominance

Monodominant forests mostly occur in proximity to rivers and streams.

We found that monodominant forests tend to occur on the opposite of rivers (other environmental factors, the issue of river data)

WCS

Ground sample data.

There are strengths and limitations to analysis, but overall it is possible for WCS to recreate this analysis

Strengths and Limitations of Sentinel-2 and PlanetScope

Sentinel-2

Strengths:

- Free to download, more bands
- Have better classification accuracy

Limitations:

- Image striping issue reduces accuracy of classification
- Difficult to obtain cloud-free images of the entire Okapi area simultaneously

Planetscope

Strengths:

- Finer resolution, more no-cloud images
- No striping problem

Limitations:

- High data cost
- Tend to overfit and lower the accuracy rate

Future work: Tutorial Explain How to Reprocess in Other Study Area

GEE Data

Download Sentinel-2 data March 2022. Import to ArcGIS pro, Change Stretch Type to Standard Deviation

Provide Data

- Boundaries
- Ground sample data
- Training Sites Example
- Google Earth Script
- Random Forest Script

Software

- Google Earth Engine
- Collect Earth Online
- ArcGIS Pro
- Terrset
- R

Training Sites

Create Random Plot on CEO, Cross Check Basemap and the Sentinel-2 image, and use Create Polygons function in ArcGIS pro

Segment Anything / Histogram Matching

Validation

Check OOB error rate and estimate Confusion Matrix in

R

Run Random Forest in R

Random Forest

Final Classification map

Segmentation

Spilt the RF output to smaller images. Use SEGMENTATION in Terrset, parameters we use: Window width: 3 Weight mean factor:6 Similarity Tolerance:5 Weight Variance Factor:0.5

References

Angu, K., Tchamou, N., & Yanggen, D. (2010). Landscape-scale conservation in the Congo Basin: Lessons learned from the Central African Regional Program for the Environment (CARPE). IUCN. <u>https://portals.iucn.org/library/node/9635</u>

Djuikouo, M. N., Peh, K. S.-H., Nguembou, C. K., Doucet, J.-L., Lewis, S. L., & Sonké, B. (2014). Stand structure and species co-occurrence in mixed and monodominant Central African tropical forests. *Journal of Tropical Ecology, 30*(5), 447–455. https://doi.org/10.1017/s0266467414000352

Hall, J. S., Harris, D. J., Saltonstall, K., Medjibe, V. de P., Ashton, M. S., & Turner, B. L. (2020). Resource acquisition strategies facilitate Gilbertiodendron dewevrei monodominance in African lowland forests. *Journal of Ecology*, *108*(2), 433–448. <u>https://doi.org/10.1111/1365-2745.13278</u>

Kashongwe, H. B., Roy, D. P., & Bwangoy, J. R. B. (2020). Democratic Republic of the Congo Tropical Forest Canopy Height and Aboveground Biomass Estimation with Landsat-8 Operational Land Imager (OLI) and Airborne LiDAR Data: The Effect of Seasonal Landsat Image Selection. *Remote Sensing*, *12*(9), Article 9. <u>https://doi.org/10.3390/rs12091360</u>

References Cont.

Kearsley, E., Verbeeck, H., Hufkens, K., Van de Perre, F., Doetterl, S., Baert, G., Beeckman, H., Boeckx, P., & Huygens, D. (2016).
Functional community structure of African monodominant *gilbertiodendron dewevrei* forest influenced by local environmental filtering. *Ecology and Evolution*, 7(1), 295–304. <u>https://doi.org/10.1002/ece3.2589</u>

Kümpel, N. F., Quinn, A., Queslin, E., Grange, S., & MapilangaInternational, J.-J. (2015). *Okapi (Okapia Johnstoni) - Conservation Strategy and Status Review*. Retrieved March 1, 2023, from https://www.giraffidsg.org/wp-content/uploads/sites/22/2016/02/Okapi-conservation-strategy-2015-2025-final-EN-I ow-res.pdf.

Lechner, A. M., Foody, G. M., & Boyd, D. S. (2020). Applications in Remote Sensing to Forest Ecology and Management. *One Earth, 2*(5), 405–412. <u>https://doi.org/10.1016/j.oneear.2020.05.001</u>

Lokonda, Michel & Freycon, Vincent & Gourlet-Fleury, Sylvie & Kombele, Ferdinand. (2018). Are soils under monodominant Gilbertiodendron dewevrei and under adjacent mixed forests similar? A case study in the Democratic Republic of Congo. Journal of Tropical Ecology. 34. 1-10. 10.1017/S0266467418000135.

Thank you!

Questions?